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Abstract. We study the full Maxwell-Dirac equations: Dirac field with minimally coupled
electromagnetic field and Maxwell field with Dirac current as source. Our particular interest
is the static case in which the Dirac current is purely time-like—the ‘electron’ is at rest in some
Lorentz frame. In this case we prove two theorems under rather general assumptions.

Firstly, that if the system is also stationary (time independent in some gauge) and isolated (in
the sense that the fields belong to a suitable weighted Sobolev space), then the system as a whole
must have vanishing total charge, i.e. it must be electrically neutral. In fact, the theorem only
requires that the system bsymptoticallystationary and static.

Secondly, we show, in the axially symmetric case, that if there are external Coulomb fields
then these must necessarily be magnetically charged—all Coulomb external sources are electrically
charged magnetic monopoles.

1. Introduction

The Maxwell-Dirac equations are the classical field (or, more ‘traditionally’, first quantized)
equations for electronic matter. Historically, only the linearized equations (where the Dirac
current is ignored as a source for the Maxwell equations) have been studied in detail—for
a comprehensive survey of the Dirac equation with various potentials, see Thaller [1]. The
lack of past interest in the full Maxwell-Dirac equations is partly due to the very difficult
nonlinearities of the equations. More importantly, the classical problem was swamped by the
extraordinary success of QED.

The difficult nature of these nonlinear equations has meant that the existence theory has
only recently been enunciated—some highlights in this development might be Gross [2],
Chadam [3], Georgiev [4], Estebat al [5], and Bournaveas [6]. This work culminated in a
tour de force of nonlinear functional analysis, the global existence proof of &laid7].

Ouraimin studying the Maxwell-Dirac systemiis to look for possible non-linear behaviour
which would not be apparent in perturbation expansions. The particular solutions found
in [9, 10] exhibit just this sort of behaviour—Ilocalization and charge screening. See also
Das [8] and the recent work of Finsteral [11].

The static Maxwell-Dirac equations were first written down in [9]. In the present work
we use this formulation to prove two theorems. Firstly, that the stationary, static Maxwell—
Dirac system must have vanishing total charge; this is done in section 4. The second theorem
proves that, in the axially symmetric case an external Coulomb field must have an associated
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5808 C Radford and H Booth

magnetic charge—external Coulomb fields must be electrically charged magnetic monopoles.
This theorem is proved in section 6.

2. The static Maxwell-Dirac equations

In standard notation the Maxwell-Dirac equations are

Y% (0y —ieAy)) Y +imy =0

Fop = Apa — Aap

30(F0,}3 = —471'ej5 = —47'[6’1,})//“0.
In [9] the 2-spinor form of the Dirac equations was employed to solve for the electromagnetic
potential, under the non-degeneracy conditithi, # 0. RequiringA“ to be a real four-vector

then gave a set of partial differential equations in the Dirac field alone, the reality conditions.
For 2-spinors:4 andv? we have

V= (gg) with  ucv® #0 (non-degeneracy)
The electromagnetic potential,

AAA — AgBA, 4, AgBA, L Agh 4 papay L
) {v ugtu Vg —ﬁ(u u viu?)

The reality conditions,

im

0" (i) = _TZ(MCUC —a€¢)
Adg = im ¢ —C=
07" (vavy) = TZ(M Ve — U V)

MABAAT)A - EABAAMA =0.
The Maxwell equations,
0% Foup = —4mejg = —4neag‘A(uAﬁA +v40,4).

These equations constitute the Maxwell-Dirac system.
We next impose the static condition.

Definition 1. The Maxwell-Dirac system is said to be static if there exists a local Lorentz
frame in which the Dirac current vector is purely time-like, ij&.= j°53.

Imposing this condition one quickly finds that
vA = @520 with x a real function.
The current vector is now
¢ = V2l + utih)sg.
As noted in [9] the gauge is fixed by the choice,
u® = Xez(x*m
ul = yer(x—m

@)

with X, Y, andy real functions orR*.
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Defining the null vectod.,

- 1 1
L=(%ua") =" —V with L0 = —(X?+Y?
(044 )= ( Nz ) \/i( )

V = (2XY cosn, 2XY siny, X2 — Y?)

our equations become,
a
—(X2+Y» =0
8t( )
V.V ==2m(X?>+Y?siny

A%
— +(V VvV =0.
o (Vx) x
With electromagnetic potential
(X2—Y? o, (VX)-V
2e(X2+Y2) 9t  2e(X2+Y?)

A% =" cosy +

T 2e(X2+Y?) | ot
where A = (A, A%, A®).

1 9
[—XV + (X2 YV -V x V]

The full system is given by the above two sets of equations and the Maxwell equations. Some
solutions to the the static Maxwell-Dirac equations were presented in [9, 10].
One further condition we want to impose is that of stationarity.

Definition 2. The Maxwell-Dirac system will be called stationary if there exists a gauge in
whichyr = €' ¢, with the bi-spinorp independent of. Such a gauge will be referred to as a
stationary gauge.

A stationary gauge is not, of course unique. For a stationary Maxwell-Dirac system there
is a distinguished stationary gauge, that for whicks indepenendent of Clearly, for such a
stationary system, if we havt’? — 0 asr — oo in some stationary gauge thédf — constant
asr — oo in any other stationary gauge.

We now have the following simple lemma.

Lemma 1. The static Maxwell-Dirac system is stationary if and only if, in the gauge given
in (1),

d X
M _po and — =
at at
In the stationary case we also have,
0 aV
X _o and — =0
at ot

Proof. If the system is stationary there exists a gauge transformation such that
ut — iyt =gt with ¢* independent of.
Consequently,
Xez(tn) — g@i=8) 0
ye:(x—m — ei(wtfé)é-l.
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So,|X| = |¢° and|Y| = |¢}|, both independent af We also have,
ox o _, (w %)

ar ot )
dx 9n 0
———=2low—=).
ot ot at
So thatg—’j = 0. The argument is easily reversed to get the converse statement. a

3. Isolated systems

An isolated system is one for which all sources are contained in som&béll < oco) and
for which the fields die off agc| = r — oc.

In what follows we will be considering stationary Maxwell-Dirac systems. For such
systems we would expect, in an appropriate stationary gaugeAthshould be @1/r) as
r — oo. We will also need to impose some decay conditiong/oasr — oo in order to
appropriately define an isolated Maxwell-Dirac system. The best language for the discussion
of such decay conditions and other regularity issues is the language of weighted function
spaces; specifically weighted classical and Sobolev spaces.

We will use the definitions of [12], other accounts of the theory may be found in [13-15].

Definition 3. Weighted Sobolev spaces can be defined via the weighted Lebesguelghaces
1 < p < oo which are spaces of locally measurable functions for which the norms

1

P 7p87nd ’
1fllps = ( 1o x) p =00
ess sup. (0 °| f1) p =00

are finite. We can replad®” with subset$2 of R" in these definitions. The weightis usually
taken to bex = V1 +r2 or o = r on subsets excludin@}. The weighted Sobolev spaces
are now defined as consisting of functions with weak derivatives up to briderwhich the
following norm is finite:

k
1 f s = DD Fllps;.
Jj=0

For p < oo we denote the weighted Sobolev spacewtﬁ/’. For p = oo we denote the
classical weighted function space &Y.

We will also require the Sobolev inequality, given here in the form presented in [12].
Sobolev inequality. If F € W, "” then
) 1125 < Cllfllkgs ifn—kp>0andp <q < L5

1—kp)

(i) I flloos < Cll fllk,ps,if n —kp < 0,and| f(x)| = o(r’) asr — oo.

Another tool we will require is the ‘multiplication lemma’. In what follows we will be
mainly using Sobolev spaces with= 2, and it is for this case that we give the multiplication
lemma (adapted from [13]).

Multiplication lemma. Pointwise multiplication ofR” is a continuous bilinear mapping

ky.2 k2,2 k.2
W, = X We " — Wy
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if ki, ko > k,k <ki+ky—n/2,ands > 81 +85.

In discussing the decay conditions gnit will be useful to have some new notation.
Firstly, we introduce two new 2-spinoosg andt, by,
Uy = «/ﬁe%iXoA
Vg = \/Ee%iXLA (2
with LCOC =1

Here, R is a positive real function ang a real function (in fact, as it turns out, the same
function introduced in the static case). Our non-degeneracy condition now reads

viu, = ReX #0.

The dyadb,, t4 give a spinor dyad basis which is ‘co-moving’ with the ‘Dirac flow’ given by
j%. In general we have

% = Ro®, (0"5" +47h)
with jj, = 2R?. These ideas can be developed further and lead to a Newman—Penrose (NP)-
type formalism for the Maxwell-Dirac system (for the NP formalism in general relativity
see [16]). We will not fully pursue this here, although we go somewhat down this path in our

proof of lemma 2, below.
For our static systems we have

R=X?+Y?
V = RV = R(sint cosn, sint siny, cost)
T
X = «/ﬁcosz
T
Y =+vRsin=
2 (3)

singe‘%’7
(04) = .
— coszez’

= ( sin%{e'@l ) .
—cosze 2"
Notice thato, and:* are both @1) asr — oo, soy decays as/R.
In discussing decay conditions on t¢ we need, of course to be aware tht is
defined only up to a gauge transformation. This problem is usually resolved (to some extent)
by imposing gauge conditions, such as the Lorenz gauge. We restrict our attention to stationary

gauges and demand thaf be O(1/r) asr — oo in some gauge. If we demand thatbe
O(1/r) then the question is, can we solve

VZp+V-A=0

sothatA’ = A+ V¢ is O(1/r)? Thatis, can we find a gauge transformation which takes us
to the Lorenz gauge with the nedstill satisfying the appropriate @/r) decay? The answer
is yes provided we choose the origindlin the correct function space.

We needA” to be at least twice (weakly) differentiable to make sense of the Maxwell
equations. So to get the appropriate differentiability and decay we will take (see definition,
below)

2,
A% e W2 (E,)

for somep > % and alle > 0. Here,E, = R3\B,, with p < oo large enough so that
B, encloses all external sources. This means we can now solve the gauge equation for
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¢ € Wf”’(Ep), with A’ = A+ V¢ ¢ Wf‘l’;(Ep), in fact, for 0 < € < 1 the Laplacian
gives an isomorphism between the function spa&€ and Wf’z’:e, see [12].

The Maxwell equations imply thgt* € WE‘3”+€(Ep). In the vector basis co-moving with
7 (induced from the co-moving dyad) the charge density2R, we would expect therefore
that R is O(1/r%) asr — oco. We also require at least three derivatives foto define the
Maxwell equations when tha* are written in terms of the componentsypf This suggests
we should takeR < Wfﬁe(Ep). Theo, andi, must also have at least three (weak) derivatives

and we also need to ensure thét e Wf’s’;(Ep). We will requireoa, 14 € Wf””(Ep), for
anye > 0. This leaves the differentiability and decay;oto be determined. Again we will
require at least three derivatives pf The decay rate, however, must be determined from the
equations.

We can now give our definition of an isolated Maxwell-Dirac system. For concreteness
and ease of manipulation we will restrict our attention to Sobolev SPE¢EsE,, ).

Definition 4. A stationary Maxwell-Dirac system will be said to be isolated if, in some
stationary gauge, we have

with E constant and
Re W32 (E,) 04, ta € W2(E,) and  AY e W*,_(E,)
forsome p >0 andany € > 0.

Remarks.

(a) This definition ensures, after use of the Sobolev inequality and the multiplication lemma,
thaty = o(r~3*) andA® = o(r~1%).

(b) Note the constank is fixed in this stationary gauge, fat® — 0 asr — oo. In the
distinguished stationary gauge (where all fields are independehtaf haveA® — %
asr — o0.

(c) Notice our condition places regularity restrictions on the fields in the refjoonly. In
the ‘interior’, R\ E,, there are no regularity assumptions. This allows the possibility of
external sources such as (singular) Coulomb potentials or magnetic monopoles in this
interior region. The total electric charge is still determined by the Gauss integral of the
electric field intensity over the ‘sphere at infinity’—this will, of course, vaniskfilecays
faster than! asr — oo.

We are now in a position to prove a lemma which will be used in the proof of theorem 1
in the next section. But we first need some new notation.
We introduce the complex null tetrad vectors

1% = O'XAOAEA n% = UXALAZA
m* = ajAoAZA m* = GZ‘ALAéA.
This null tetrad can now be used to define the following (NP) intrinsic derivatives:
ad d
D=1I" A =n"
dx“ dax“
d - __ 0
5§ =m* § =m*

0x“ axe’
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With this notation and the expression faf4 of section 2 we find that the (real) potenti
has to have the following components with respect to the null tetrad:

1 .
A =1,A% = [V2mcosy — Ax +iu—ji+y = 7)]
e

1 .
A,y = ngA® = Z[\/_ZmCOSX +Dx +i(p—p+&—e)]

Am:maAO‘:i—l:—a—R*'&—ﬂ"'f_ﬁiI “)
2e R

o i [8R -
Ap =myA :Z[?—a+ﬁ—t+n:|.

Hereq, B, 7, 1, p, y ande are the NP spin coefficients (Ricci rotation coefficients for the
non-holonomic NP tetrad), see [16]. Their exact form is not important here, what we do need
to know is that they are all of the for@o, (d¢, 03t or tdo, whered is any one of the NP
intrinsic derivativesD, A, § or §.

Lemma 2. For an isolated, stationary Maxwell-Dirac system the following must hold
SR/R — £mo
SR/R — Emy
for anye > 0 and some constarf.

} e W22 (E,)

Proof. A straightforward application of the multiplication lemma. We work in the
distinguished stationary gauge. With, 4 € W32(E,) andA® — E/e, A € W22 _(E,),
for anye > 0, we have

Ay — mog A — mog e W2A(E,) §1>—1+3
and
o, B, Y, T, UL, T, EE WBZZ’Z(EP) 8o > —1+ 4e.
The result then follows from (4). a

The spherically symmetric solution of [9] is in fact &vlated stationaryand static
Maxwell-Dirac system.

4. Vanishing total charge

We will be working with the stationary, static Maxwell-Dirac equations. From section 2 they
are
(Vx)xVv =0
V.V =-2m(X?>+Y?siny
(Vx)-v
2¢(X2+7Y?)

[(X?=Y)Vn—V x V]

0 m
A” = —cosy +
e
®)
T 2e(X?2+7Y?)
VZA® = 47 ej°
Vx(VxA)=0.
We can now state and prove our theorem of vanishing total charge.

Theorem 1. An isolated, stationary, static Maxwell-Dirac system is electrically neutral.
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Proof. A more restricted version of this theorem was proved in [17] by one of us (HB).

The stationary gauge of definition 4 is the one for which— 0 asr — 0, the stationary
gauge used in equations (5) hasindependent of. A gauge transformation of the type
¥ — e 'E'y will bring the gauge of definition 4 into that of equations (5). TAfeof these
equations then differs by a constantE /e, from the A of definition 4. In fact, we will be
able to determiné in the proof of the theorem, see also corollary 1. As we noted earlier we

have
sinfe 2
[0} = .
A — cosgé?

. i
A ( smgre'ziv>
—cosze 2
in the static case. The system is isolated so using the multiplication lemma we have that
sint, cost, sinp, cosye W3(E,).
Now we haveng = og‘AoAZA = 0, so using lemma 2 we have
3R

R
Which in our static case gives,

SR
and = € W22 (E,).

cost (cosna—R + sinna—R> - sinra—R € W22, (E,)
0x ay 9z

and s;innaa—ie - cosnz—ie € W2 (E,). (6)
The second of equations (5) can be written as
V.-V V.VR

R R

with V' = (sint cosn, siny sint, cost). Using the multiplication lemma we have

Ve Wy*(E,) and  V.-Ve W, (E,)
for anye > 0. We also have

V.VR 3R . R dR
= sint cosp— + sint sinp— + cost —. (8)

0x ay 0z
Next we utilize the invariance of our equations under Lorentz transformations. Infact, we know
that if (u4(x%), va(x%)) is a solution to the Maxwell-Dirac equations th@mn (x%), vs (x%))
is a solution to the original system in th& coordinates; hergé® are the Lorentz transformed
Cartesian coordinates. This is, of course, true for any linear Lorentz invariant theory. Consider
the rotation

—2msiny = +V.V @)

X =xC0Sw + ySinw
= —x Sinw + y COSw

<>

2D

T
=z with =——.
Z w >

This gives
sinn(2*) 9R(X*)  cosn(x*) IR(X*)  cosn(x*) IR(x*) . sinn(x*) dR(x%)
R(x%)  dx R(x%) dy  R@R9) ax R(x¥) 9y
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DiffeomorphismsR® — R2 induce an isomorphism of the Sobolev spaﬁés", see [13]. The
rotation above preserves, and will give an isomorphism of the Sobolev spa@g@”(Ep).
Using our last equation and (6) gives

cosn R sinnpdR
=)
R o0x R 9y

This equation and (6) with the multiplication lemma then gives (multiply each equation in turn
by sinn and cos; etc),

10R 10R

2 ox Ry © W22 (E,).
The rotation
I=-z y=y I=x
gives
sinn(x%) 9R(x%)  cosn(x%) AR(x%) _ sinp(x*) OR(x¥) cosn(x*) dR(x%)
R(X*)  dx R(x®) 3y R(x®) 92 R(GZ®) 3y
Again using the multiplication lemma with (6), we have
?% € W22 _(E,).
In the same fashion, using the rotation= x, y = z, Z = —y, we have
%% e W22 _(E,).
Another use of the multiplication lemma with the last two equations gi%géﬂ/az €
W22 (E,).
Altogether we have
10R 10R 10R 22
Rox  Ray  Raz B
A final use of the multiplication lemma with (6) and we have
V.VR

2,2
= € WAL (E)).
We can now conclude from (7) that sine W>2_(E,), for anye > 0. By the Sobolev
inequality siny = o(r—*) asr — oo.

Now sine is an invertibleC*> function on the range o (on E,, with p large) with
siny = 0 for x = 0. So we can now write

X =nmw+p with n=0,+1,42, ... and e W22 (E,). (9)

Next we use the first of equations (5) to rewrit® entirely in terms ofy and |Vy].
This equation implies we may writ¢’ = yVy, for some functiony. We also have
V| = X?+Y2=|y||Vx], so that
& .
A% =" cosy + = |Vy| with =2
e 2e Iyl
Which, using (9), may be written as

2m .
A9 — ™ costnm) = — 2" cognr) sir? (5) + 2Vl
e e 2 2e
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Hence,
m
A0 — — cosinm) € W2 (E,).

Note that|V x| is bounded orE,. Soy cannot change sign afi, asR = X2+ Y? £ 0, ¢ is
fixed.

From the (first) Sobolev inequality applied &3 — 2 cosnm, With p = g = 2, we have
that

m
A° — — cosnm) € woP (E,).
Consequently, we also have

m
A° — — cosinm) € WE~§(E,,).

Now, in the static casg® = V2R, soV2(A° — cosnr) € W32_. Hence,

—3+e*
A% — 7 cosnr) € W32 _(E,)
e
and from the Sobolev inequality we find tHatA®| < Cr—2* (with 9, = 3/dx’). So we have,

5
|al.Ao|6r_6(_l—Z)—3 < C4|aiA0|2r—2(—3+6)—3

foranyO< e < 112 Thus,d; A% € W°’96/4(Ep). Which finally gives us,
A0 — %cos(nn) € WH(E,)

and the Sobolev inequality now gives
A® — cosnm = o(r™4).

From which it is clear that the total electric charge of the system

1
lim — [ (VA% . dS with S, the sphere of radius

p=o0 A Jg

must vanish. O

Corollary 1. In the gauge in whic® — 0 asr — oo the Dirac bi-spinor of an isolated,
stationary, static Maxwell-Dirac system takes the form

) with ¢ € W2 _(E,) (as above)

Proof. This result is a simple consequence of the proof of the theorem. We had
A0 — %Cos(nn) e W2 _(E,).
The constant term;- 7 cosnr is removed by the gauge transformation
W — g icosmmty,
0

In [9] we presented a unique spherically symmetric solution which provides a good
example of the properties just described. For larges found

1 1 10 1
=g — — — — —_—
X mr  168n3r3 ré

=My L3 oL
T e emr?  112emS3r4 8 )"
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5. The axially symmetric case

By axially symmetric we mean that the system is invariant under rotations about a fixed axis.
This requires that gauge invariant quantities be invariant under translations in the azimuthal
coordinatep.

Definition 5. A Maxwell-Dirac system will be called axially symmetric if
0 d i 0
L,—|=|N,—|=0 where L =o% u’i?
R10) 1) A4 dx«
d

and N:o“-vAl')A—.
AA Ox“

For our static systems we require only tiiabe invariant under translations¢n In fact,
writing L in cylindrical polar coordinates,

0 1 o N

L=L"—+_"—(V"p+V?p+Vk

a7 ﬁ( p ¢ )
:Loi+i Vpi+v¢i+vzi
it /2 dp ¢ 0z

we find that

X2+y?
W2
V9 = 2XY sin(n — ¢) and Vi=Xx?-yY?

must all be independent ¢f This means our static Maxwell-Dirac system is axially symmetric
if

L° VP = 2XY cosn — ¢)

X Y _dn—¢)

ap ¢ 0p
This information lets us characterize stationary, axially symmetric, static Maxwell-Dirac
systems as follows.

0.

Lemma 3. A non-trivial static, axially symmetric Maxwell-Dirac system is stationary if and
only if n = ¢ in the gauge given in (1).

Proof. As V is independent op then so isy, as siny = (V - V)/(X2 + Y?). The reality
condition,

A%
—+ (V) xVv =0

ot
gives,
ave a
- _ V¢_X =0
ot 9z
¢
AL
dt ap 9z
Z
WVE el _ g
at ap

If the system is stationary, lemma 1 saysis independent of. So eitherV? = 0 or x
is constant. Constant leads to the trivial solution witt = ¥ = 0. So we must take
V¢ = 2XY sin(n — ¢) = 0. We have; = ¢ modnr.
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On the other hand, ifi = ¢ we haveV? = 0 and consequently botti® and V< are
independent of. Combining these with, (X2 + Y?) = 0 gives the result. O

From now on we study the axially symmetric, stationary, static Maxwell-Dirac equations.
It will prove convenient in what follows to use spherical polar coordinates, ¢) and to
make the following change of variables:

T . T
X = \/ﬁcos(i) and Y = \/ﬁsm(z) .
All our dependent variables depend only @), the equations are
V = R[cos(t — 0)# + sin(t — 6)8]
(Vx)xVv =0
V.V =-2mRsiny
0 m )
A" = —cosy + —|Vy|
e

_ 1 [ cose 119 Rsin(t — 0 9 R cO 0 .
—E{ ——[a—rv in(e — ) — s(r—))“qb

(10)

rsind rR

together with the Maxwell equations. Hetef and¢ are the unit coordinate vectors.
We note thatA® automatically satisfies the Lorenz gauge condition.
In the spherically symmetric case [9] we have- 6 with R andy functions ofr only. In
which case

1 coté
A==
2e¢ r
the magnetic monopole.
Other tractable cases are those for whidh constant. It is straightforward to show there
are really only two cases, see [17],

o the cylindrically symmetric case,= 7 /2, see [10].
e the case = 0, variables depend anonly, see [18].

6. Magnetic monopoles

The spherically symmetric solution has an external (i.e. not sourced by the Dirac field directly)
electrically charged magnetic monopole. In this section we will prove a theorem which shows
that this is, to some extent, the generic situation. We will show that the axially symmetric,
stationary, static Maxwell-Dirac system can have an external Coulomb point charge only if it
is magnetically charged. First we define what we mean by an external Coulomb field.

Definition 6. We will say that a Maxwell-Dirac system has an external Coulomb field if we
can choose spherical polar coordinates and a l@JIcentred at = 0 such that
A0=€+h in B, p>0
r
with, h, a bounded function oB, andg constant.

Remarks.

(1) ¢/r is, of course, harmonic oB,\{0}, so it is not directly sourced by the Dirac field via
the Maxwell equatiorV2A°® = 4rej°. In this sense the Coulomb field is ‘external’ to the
Dirac field.



Magnetic monopoles, electric neutrality 5819

(2) The singular point = 0 of A leads to singular behaviour it andy. We can, however,
still define the electric and magnetic charges of a region (or indeed a point, using a suitable
limit) by the usual Gauss integrals,

/E-dS and /B-dS
S S

whereS is a topological sphere enclosing the region for which we wish to calculate the
charge.

(3) The condition thak is bounded orB,, is quite weak. In practice it will follow from elliptic
regularity of the Poisson equatiorth = 4rej® (j© = v/2(X? + Y?) = /2R must be at
leastZ(B,) for the total Dirac charge to be well defined B), see for example [19, 20].

We also requireR to be differentiable at least three times (if only in the weak sense) to
satisfy the Maxwell equation fad—this putsr in Wf”’ for somep > 1. Consequently,

h will be in Wf;’z’, which ensures that can be included in one of the classical weighted
function spaces.

Now for our theorem.

Theorem 2. Suppose an axially symmetric, stationary, static Maxwell-Dirac system has an
external Coulomb field. Let(, ,,, = B,\B,,, withp > p; > 0and B, as in the definition
above. Ifrd,t — dpR/R is bounded o, ,,), then the Coulomb point charge necessarily
carries a magnetic charge of Dirac valu%—l; i.e. all electric point charges also carry a
magnetic monopole.

Remark. The conditionrd,r — 9 R/R bounded onA4, ,, is not particularly strong. It
is true, for example, ifX, Y € C}(A(, ))—We assumeR = X2+ Y2 # 0; or, when
A e WEA(B\(O).

Proof. In [17] it was shown that if a Maxwell-Dirac system has a central Coulomb charge
then the magnetic field is necessarily unbounded at the centre.
In our proof of theorem 1 we noted thet = y V x, so from (10) we have

cogT — 0) = g 21X
_ X ) ‘avig' } where &= 1. (11)
sin(z — 6) = e ;& ¥
We will first show that sitit — ) — 0 asr — 0.
Now, A% = £+, so from (10) we have
q
IVxl==+g (12)

-
whereg = h — 7 cosy is bounded orB,. Next, we write

x=qlnr +¢ on B,\{0}.
Equation (12) is
2 1 2
0,02+ o0+ @5 = T g+ g2 (13)

Note thatr|Vx| — g asr — 0 sothatrd,x = g +rd,¢ anddyx = dy¢ are bounded on
A(p.pp), fOr p small enough. Lei be the smallest non-negative number suchthgt; — 0
asr — 0. We can write (13) as

(r%narc)z + 2([!‘"3,( + (r%agC)z = qu"g +r'7+lg2_
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Itis clear thatr%arg -0 andr”T_laeg — 0. From which we conclude that< 1 and so
99X = 99¢ — 0 asr — 0. Consequently,

g X
riVxl
Now rd,x — g asr — 0, sord,x cannot change sign @svaries, forp small. Writing
€1 = q/lq| we have, from (11),

sin(t —0) = -0 as r - 0.

cost(r, ) — —eeq1 }

cost(r,0) — €& as r—0. (14)

We now work onA, ,,) with p small enough that cgs — 0) # 0. The magnetic charge
of the magnetic fieldB =V x Ain B,, p >r > p1,is

1 1 /7
b= —/ B.dS = -/ 3 (r SiNA) do (15)
47'[ S, 2 9=0

whereA = A is given in (10). After some manipulation the third equation of (10) can be

written as
r 8,- R 89 R

0pT — 2+ = tan(t — 0) <ra,r—7) — 2mrsiny — 3cogt — 0).

So that ifrd, 7 — 22 is bounded o, ,,,) then so isdyr — 2 + "8 From (10) we have

. 1 .
rsind A = —{cost — P sSinf}
2e

ro,R

0 R .
where P = <r8,r — %) cogt —6) — (891 -2+ ) sin(t — 0).

Clearly, under the conditions of the theorefnis bounded o, ,,,. From (15) we now have

b 2_1e [cosﬂr, ) . cost (r, 0)} _ [P sine]r_
1 [cost(r, ) — cost(r, 0)
-2 [ . } |
Finally, from equations (14) and (15) we obtain the magnetic charge in therliitO
—gg1  =£1
2  2¢

bo =

O

Corollary 2. Suppose we have an axially symmetric, isolated, stationary, static Maxwell—
Dirac system with the only external sources beMgsolated electrically charged magnetic
monopoles. Let the conditions of theorem 2 apply inXhiealls B,, , containing the charges.

Let the conditions of theorem 1 apply 5. Then, ifN is even there aré/ /2 positive charges

and N /2 negative charges (with corresponding monopoles), with the total magnetic charge of
the system being zero. Af is odd there arg N — 1) /2 charges with one sign an@V + 1)/2
charges with the opposite sign, with the total magnetic charge of the systendhbicy).

Proof. We haveN charged monopoles eachina bB)|,i =1,2,3... N, there are no other
external sources and all ttl, are properly contained iB;.
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We haveA is O(1/r) so thatP, as defined in the above proof, is boundedn. Using
the results in the proof of theorem 2 and the divergence theorem we find the total magnetic
charge of the system.

-1 1 . 0
biotal = lim —fs(v x A)-dS = > lim [COSf(r 71)2 cost(r )}

r—oo 41 € r—>00

This gives,
N
1>¢ Z g > -1
i=1
from which the results of the corollary follow. O

7. Conclusions

At first sight theorem 1 may not appear all that startling—a system of charges and Dirac fields
with a non-zero net charge cannot be in equilibrium, we would not expect it to be static. In
classical physics, however, one expects stationary or static systems to be the end point of some
time evolution. This clearly cannot be the case for a single isolated electron modelled by the
Maxwell-Dirac system. To construct such a model we will have to abandon one, or both, of
the static and stationary assumptions.

Theorem 1 is remarkable in the following way: no matter what arrangement of external
electric and magnetic fields inside the bBJl, no matter what we do to the topology #) the
total electric charge of the system must be zero. The total charge vanishes purely as a result
of the asymptotic decay and regularity conditions.
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